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We test the performance of a RG-improved kernel in the determination
of the amplitude of a physical process, the electroproduction of two light
vector mesons, in the BFKL approach at the next-to-leading approximation
(NLA). We find that a smooth behavior of the amplitude with the center-of-
mass energy can be achieved, setting the renormalization and energy scales
appearing in the subleading terms to values much closer to the kinematical
scales of the process than in approaches based on unimproved kernels.
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1. Introduction

It is well known that the NLA corrections to the BFKL [1] Green’s func-
tion turn out to be very large, this being a signal of the bad behavior of the
BFKL series. In order to “cure” the resulting instability, more convergent
kernels have been introduced, including terms generated by renormalization
group (RG), or collinear, analysis [2]. They are based on the ω-shift method,
ω being the variable Mellin-conjugated to the squared center-of-mass energy
s. In Ref. [3] this original approach has been revisited and an approximation
to the original ω-shift has been performed, leading to an explicit expression
for the RG-improved NLA kernel. It would be quite interesting to test
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the RG-improvement of the kernel in the calculation of a full physical am-
plitude. A test-field for this comparison can be provided by the physical
process γ∗γ∗ → V V , where γ∗ represents a virtual photon and V a light
neutral vector meson (ρ0, ω, φ). The amplitude of this reaction1 has been
calculated in Ref. [4] through the convolution of the (unimproved) BFKL
Green’s function with the γ∗ → V impact factors, calculated in Ref. [6].
For this amplitude a smooth behavior in s could be achieved by “optimiz-
ing” the choice of the energy scale s0 and of the renormalization scale µR,
which appear in the subleading terms. The optimal values of the two en-
ergy parameters turned out to be quite far from the kinematical scales of
the reaction, probably because they mimic the unknown next-to-NLA cor-
rections, which should be large and of opposite sign respect to the NLA
in order to preserve the renorm- and energy scale invariance of the exact
amplitude. If this explanation is correct and if the RG-improvement of the
kernel catches the essential dynamics from subleading orders, then, by the
use of an RG-improved kernel, one should get more “natural” values for the
optimal choices of the energy scales and, of course, results consistent with
the previous determinations.

2. The NLA amplitude with the RG-improved Green’s function:

numerical results

We consider the production of two light vector mesons (V = ρ0, ω, φ)
in the collision of two virtual photons γ∗(Q1) γ∗(Q2) → V (p1) V (p2) . The
action of the modified BFKL kernel on his leading eigenfunctions is (the
details of all the analytical calculations can be found in Ref. [7]):
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where the first term represents the action of LLA kernel, the second and the
third ones stand for the diagonal and the non-diagonal parts of the NLA
BFKL kernel [4] and
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1 The same process has been analyzed, with different approaches, also in [5].
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Fig. 1. Ims(A)Q2/(s D1D2) as a function of Y at Q2=24 GeV2 and nf = 5 in

the “exponentiated” (left) and “series” (right) representation with and without

RG-improvement of the kernel.

is the solution of the ω-shift equation obtained in [3], with
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We present our numerical results for the dependence in s of the BFKL ampli-
tude calculated for the process under study, using both the “exponentiated”
and the “series” representations [4], equivalent within NLA accuracy. Fol-
lowing Ref. [4], we will adopt the principle of minimal sensitivity (PMS) [8]
requiring, for each value of s, the minimal sensitivity of the predictions to
the change of both the renormalization and the energy scales, µR and s0.

2.1. Symmetric kinematics

We consider here the Q1 = Q2 ≡ Q kinematics, i.e. the “pure” BFKL
regime, with Q2=24 GeV2 and nf = 5. We set ln(s/s0) = Y − Y0, where
Y = ln(s/Q2) and Y0 = ln(s0/Q

2) and we have looked for the optimal value
for the scales µR and Y0. We have found that for both representations the
amplitude is always quite stable under variation of the scales and exhibits
generally only one stationary point. We choose as optimal values of the
parameters those corresponding to this stationary point. For the “exponen-
tiated” representation the optimal values turned out to be typically µR ≃ 3Q
and Y0 ≃ 2 while for the “series” representation we have found µR ≃ 3Q
and Y0 ≃ 3. In comparison with Ref. [4], where the optimal choices were
typically Y0 ≃ 2 and µR ≃ 10Q, we can see that there is a remarkable move
towards “naturalness”. In Fig. 1 we show the results for the (imaginary part
of the) “improved” amplitude in the two representations compared with the
result obtained in Ref. [4]. Looking at the first plot, the curves are in good
agreement at the lower energies, the deviation increasing for large values of
Y . This is consistent with having a larger asymptotic intercept when the
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Fig. 2. Ims(A)Q1Q2/(s D1D2) as a function of Y for photons with strongly ordered

virtualities (Q2/Q1 = 6 and Q2/Q1 = 96, with Q1Q2=24 GeV2), in comparison

with the case of photons with equal virtualities (Q2
1 = Q2

2=24 GeV2).

RG-improvements are taken into account. Moreover when the condition
ᾱs(µR)Y ∼ 1 his satisfied (Y ∼ 6) the discrepancy is not so pronounced. In
the case of the “series” representation (Fig. 1, second plot) the situation is
similar to the previous one, but the deviation between the curves appears
to be more marked here. We observe that both the curves for the amplitude
with RG-improvement fall almost on top of each other. This is a further
indication of a better stability, induced by the RG-improvement.

2.2. Asymmetric kinematics

When the virtualities of the photons are strongly ordered, we enter the
“DGLAP” regime, where RG-effects should come heavily into the game.
In this regime, previous attempts to numerically determine the amplitude
using unimproved kernels were unsuccessful due to severe instabilities [9].
We have found here that these instabilities disappear if, instead, the RG-
improved kernel is used. In the numerical analysis to follow, we consider
two choices for the virtualities of the photons, Q1=2 GeV, Q2=12 GeV and
Q1=0.5 GeV, Q2=48 GeV, so that Q1Q2 = Q2=24 GeV2 in both cases,
and used the “exponentiated” representation. We define Y = ln(s/Q1Q2)
and Y0 = ln(s0/Q1Q2). For the first choice of virtualities, we find that for
each Y value the amplitude is still quite stable under variation of the energy
parameters and the optimal values are µR ≃ 4

√
Q1Q2 and Y0 ≃ 2, almost

independently of Y . The same holds for the second choice of virtualities,
with the only difference that now the optimal values depend strongly on Y .
As an example, for Y = 6, when ᾱs(µR)Y ∼ 1, the optimal µR is ≃ 3

√
Q1Q2,

but Y0=7. This large value for Y0 should not be surprising: if we use Q2
2 as

normalization scale in Y0 instead of Q1Q2, the optimal value lowers down
∼2.5, which looks more “natural”. In Fig. 2 we plot the amplitude for the
two choices of photons’ virtualities we have considered, together with the
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amplitude for Q1 = Q2 =
√

24 GeV. The amplitude becomes smaller and
smaller when Q2/Q1 increases, as it must be expected due to the presence
of the factor cos(ν log(Q2

2/Q
2
1)) [7] in the integration over ν.

3. Conclusions

We have applied a RG-improved kernel to determine the amplitude for
the forward transition from two virtual photons to two light vector mesons
in the Regge limit of QCD with next-to-leading order accuracy. The result
obtained is independent on the energy scale s0, and on the renormalization
scale µR within the next-to-leading approximation. Using two different rep-
resentations of the amplitude, we have performed a numerical analysis both
in the kinematics of equal and strongly ordered photons’ virtualities. An
optimization procedure, based on the principle of minimal sensitivity, has
led to results stable in the considered energy interval, which allow to predict
the energy behavior of the forward amplitude. The important finding is that
the optimal choices of s0 and µR are much closer to the kinematical scales of
the problem than in previous determinations based on unimproved kernels.
This leads us to conclude that the extra-terms in the BFKL kernel coming
from RG-improvement, which are subleading to the NLA, catch an impor-
tant fraction of the dynamics at higher orders. Moreover, the use of the
improved kernel has allowed to obtain the energy behavior of the forward
amplitude in the case of strongly ordered photons’ virtualities, which turned
out to be unaccessible to previous attempts using unimproved kernels.
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